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1. Summary 

 

Below is a summary of accomplishments, listed by project task. 

 

• API (Application Programming Interface) for GPU (Graphics Procesing Unit) Software: 

Accomplished. The developed APIs include those available through the Targeted Dataflow 

Interchange Format (TDIF) language that is used at compile time, and run-time APIs, such 

as the topological context (TC), execution context (EC), and first-in-first-out (FIFO) APIs.  

• GPU-Targeted Software Synthesis Tool: Accomplished. In this tool, actor-specific TDIF 

files are parsed and APIs are generated for the corresponding actors. Actor designers can 

then provide the associated implementation code (in C or CUDA (Compute Unified Device 

Architecture)) based on the provided APIs. Furthermore, DIF (Dataflow Interchange 

Format) files, which are specified in the DIF language, expose the high level dataflow 

graph structure of the source application. DIF files are parsed by our tool, and a 

corresponding top-level C file is generated that implements the input dataflow graph as 

well as a header file that is provided for the designer to implement schedulers through a 

standard interface. 

• Library Components, Examples, and Demonstrations: Accomplished. A fundamental image 

processing application centered around Gaussian filtering is demonstrated by using our 

TDIF-based design and synthesis approach. A collection of dataflow library components 

are developed to demonstrate this Gaussian filtering application. 

• Instrumentation Techniques: Accomplished. To measure the performance of an actor 

implementation in C and CUDA, our tool is capable of invoking measurement functions 

provided by gcc and NVIDIA’s SDK (Software Development Kit) for CUDA. Our tool 

provides measurement results by calling these functions during execution of an actor firing. 

In addition to demonstrating execution performance, bandwidth and memory management 

efficiency are also evlauated. 

• DIFML (Dataflow Interchange Format Markup Language): Accomplished. DIFML is 

designed as an XML (Extensible Markup Language)-based format for exchanging 

information between the DIF language and other tools and languages, and more generally, 

between arbitrary pairs of dataflow environments. The associated utility in the package is 

designed to support bi-directional transformations between DIF files and DIFML files. 

 

 

2. Introduction 

 

Signal processing applications for layered sensing can often be described in terms of signal 

processing block diagrams. In early design stages, system blocks are treated as ―black boxes,‖ and 

designers focus on defining application specifications and features at a high level of abstraction. 
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After a target platform is chosen, system blocks are manually transcoded, and the resulting 

implementations are tuned to match the platform. Such a design process, from an initial 

application description to a final implementation, often consists of several complex design steps 

that are linked by different design languages and tools, and ad-hoc transcoding processes. While 

targeting heterogeneous, high performance design platforms, such a process tends to be more 

error-prone and time-consuming due to the need for efficient coordination across different 

processor types. Therefore, a cross-platform design environment is needed that provides 

capabilities for the designer to experiment with key design phases — ranging from early design 

exploration to final implementation tuning — on different platforms. 

Model-based design methods based on dataflow models of computation have become 

increasingly popular to provide formal semantics for such block diagrams because of their natural 

correspondence to signal flow graphs and system level DSP (Digital Signal Processing) flows. 

Consequently, dataflow graphs are widely used to model applications in many signal processing 

domains (e.g., see [1]).  

In dataflow models of computation, signal processing applications are modeled as directed 

graphs, where vertices (actors) represent computational modules for executing (or firing) 

functional tasks, and edges represent first-in-first-out (FIFO) channels for storing data values 

(tokens), and imposing data dependencies between actors. Whenever an actor fires, it produces 

and consumes tokens from its input and output edges, respectively.  

Nowadays, the most popular way of generating code for high performance GPUs is through 

using low level specialized languages or APIs. When graphics cards were used only for graphics, 

programmers used OpenGL (Open Graphics Library) or shader languages like Cg (C for 

Graphics). But as more general purpose programs became supported, general purpose languages 

like CUDA or Close to Metal (now in Stream Computing SDK) have thrived for NVIDIA and 

AMD (ATI), respectively. These languages are C variants giving programmers a familiar front 

end, while restricting some C features and introducing GPU specific constructs. These allow 

designers the best opportunity for maximum performance as little of the architecture is abstracted. 

But they do create a time consuming design process due to difficult design decisions. The 

resulting code has limited portability and must be re-tuned for different or newer architectures. 

OpenCL (Open Computing Language) provides a more portable (but not much higher level) way 

of describing a multicore application, but at the expense of performance. 

Developing applications for GPUs from higher level descriptions has been an important point 

of research in recent years. Streaming languages like Brook and StreamIT target GPUs using high 

level streaming constructs. Streaming languages leverage the parallelism within a stream and the 

flexibility to consume and produce an arbitrary number of tokens to maximize memory 

bandwidth and balance compute and input/output. When the application matches the streaming 

model, these approaches can work well, but they often suffer from being too restrictive, while not 

being able to tap into compiler advances from the low level program approaches. In order to tap 

more into the performance potential, recently researchers at NC State have worked to raise the 

abstraction level of CUDA by enabling designers to not specify certain design parameters that tie 

a kernel to a specific GPU. This ―Naive CUDA‖ can then be more portable and reduce the burden 

on designers. However applications must still be structured in a CUDA specific way. 

The dataflow based approach used in this project is unique by leveraging the power of 

dataflow models, but still allowing low level customizations. It provides a more flexible 

framework without compromising on the types of optimizations possible by offering a breadth of 

formal models for the application designer to choose from. This application description is then 

tied as closely as possible to the application domain, not the target, making it highly portable 
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while still structured enough to be optimized for. Furthermore, individual actors can still be tuned 

using low level techniques. These additional models will also open the high level application 

descriptions to a wider gamut of application domains. This work lays the foundation for such an 

approach. 

The Dataflow Interchange Format (DIF) framework provides a standard approach for 

specifying mixed-grain dataflow-based semantics for signal processing system design [2]. The 

DIF Language (TDL), which is part of the DIF framework, provides a unified textual language 

for expressing different kinds of dataflow semantics, including graph topologies, hierarchical 

design structure, dataflow-related design properties, and actor-specific information. TDL is 

therefore suitable for both programming and interchange (transfer of dataflow graphs across 

design tools). By using TDL, signal processing systems can be represented as dataflow graphs at 

a high level of abstraction.  

The DIF package (TDP) is a software tool that accompanies TDL, and provides a variety of 

intermediate representations, analysis techniques, and graph transformations that are useful for 

working with dataflow graphs. With the support of module libraries for the actors referenced in a 

dataflow graph, an efficient software implementation for the graph can be synthesized 

automatically using the DIF-to-C tool [2]. Although DIF-to-C supports only static dataflow 

applications — in particular, those that are based on synchronous dataflow (SDF) semantics [3] 

— the tool is capable of exploring a wide range of useful implementation trade-offs that are 

exposed effectively through DIF-based dataflow representations. 

In this project, we develop new dataflow-based technology and associated design tool, called 

the targeted dataflow interchange format (TDIF), for high-productivity, high-confidence design 

and optimization of layered sensing software. TDIF-CUDA is a specialized variant of TDIF that 

is geared towards GPU-based implementation. TDIF-CUDA provides a new GPU-targeted 

software synthesis environment for generating software implementations that can be compiled 

onto CUDA-enabled GPU platforms. 

TDIF extends the capabilities of DIF with dynamic dataflow software synthesis, cross-

platform actor design support, and dataflow-integrated features for instrumenting and tuning 

implementations. More broadly, TDIF provides novel capabilities, based on the principles of task-

level dataflow analysis, for exploring and optimizing interactions across application behavior; 

operational context; heterogeneous platforms, including high performance embedded processing 

architectures; and implementation constraints. Our approach provides a formal basis for 

systematic integration of embedded signal processing software on high performance platforms for 

layered sensing and information processing. 

We demonstrate the TDIF environment using a Gaussian filtering application for image 

processing. We also describe how the designer can use the application programming interface 

generated using the TDIF environment to design and develop libraries of actors associated with 

application dataflow graphs as well as schedulers for executing the applications. 

It is worth noting that there is no inherent restriction on the complexity of the application 

specifications that can be handled by our tool. The allowable complexity of an implementation 

that is derived from our tools is limited by the characteristics of the targeted GPU platform. 

Furthermore, our tool can, in general, handle dataflow graphs that have both static and dynamic 

application behavior. This is useful, for example, to support environmental awareness 

functionality, where dynamic dataflow support is important. 
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3. Methods, Assumptions, and Procedures 

3.1. Application Programming Interface 

3.1.1. The TDIF Language 

 

In order to provide high-level specifications for writing dataflow actors that can be retargeted 

across different platforms, we have developed a first version of a language called the TDIF 

language. In our previous work, we developed preliminary underpinnings for TDIF and 

associated demonstrations for application specific integrated circuit implementation based on the 

Verilog hardware description language (HDL). TDIF is based on the core functional dataflow 

(CFDF) [4] model of computation, which provides a generalized modeling framework that is 

suitable for efficient representation, analysis, and scheduling of signal processing systems. 

The TDIF language gives a high level specification format for writing dataflow actors that 

can be efficiently and reliably retargeted across different platforms. The TDIF language is a light-

weight language that consists of five keywords: module, input, output, param, and mode. 

A given actor specification should contain (at the beginning) a single module statement; 

each of the other kinds of statements can be repeated as many times as needed for the given type 

of structure being declared (e.g., two input statements and one output statement for a two-

input, single-output actor).  

The keyword module defines an actor with name and type that specifies the targeted 

language used to implement this actor. The syntax of module is:  

module <type> <actor name> 

For example, 
 

module CUDA inner_product 

 

defines an actor module named inner_product, and the targeted language for implementing this 

actor is CUDA. 

The keyword input defines input ports of an actor with names and token types with respect 

to the associated FIFOs. The syntax of input is:  

input <name of input port> <token type> 

For example, 
 

input input1 float 

input input2 float 

 

defines two input ports: input1 and input2 of an actor. Both types of tokens that are stored at 

the associated FIFOs linked to input1 and input2 ports are floats. 

Similarly, the keyword output defines output ports of an actor with names and token types 

with respect to the associated FIFOs. The syntax of output is:  

output <name of output port> <token type> 

For example, 
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output output1 float 

 

defines one output port: output1 of an actor. The type of tokens that are stored at any FIFO 

linked to output1 port is float. 

The keyword param defines parameters of an actor with names and the associated parameter 

types. The syntax of param is:  

param <parameter name> <parameter type> 

For example, 
 

param X int  

param Y float 

param Z char  

 

defines three parameters: X, Y, and Z of an actor. Types of these parameters are integer, floating 

point, and character, respectively. 

The keyword mode defines modes of an actor with names based on CFDF semantics. The 

syntax of mode is:  

mode <mode name> 

For example, 
 

mode INACTIVE 

mode PROCESS 

 

defines two modes: INACTIVE and PROCESS of a CFDF actor. 

In the TDIF environment, an actor invocation has an operational context, which is 

encapsulated by its execution context (EC), and a topological context (TC) or dataflow context, 

which is encapsulated by a list or array of incident ports. 

 

3.1.2. Topological Context 

 

An actor’s topological context (TC) defines lists of input and output ports, along with their 

associated FIFO buffers, for an actor. Functions that associate the given FIFO to the ports of a TC 

are implemented as well as the functions that perform read and write operations to a TC at the 

given ports.  

We provide interfaces for using C-based TCs of actors. Implementation of these interfaces 

has been integrated as part of the run-time library in the TDIF environment. Descriptions of these 

interfaces are available in the delivered tdifc_tc.h. 

 

3.1.3. Execution Context 

 

An execution context (EC) includes a special state variable, which is common to all actors, and 

keeps track of the current functional mode associated with the context; a special parameter, also 

common to all actors, that implements the vectorization (block processing) degree of the context; 
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function pointers for actor invocation, and data rate computation; the set of parameters for the 

context; and the set of state variables for the context. 

In an EC, two functions characterize execution of an actor, the invoke function, and data rate 

computation function. Actor designers are required to follow the associated application 

programming interfaces and provide specific implementations for both functions. This provides a 

structured methodology for developing actors that can be formally integrated with the overall DIF 

framework.  

Checking for fireability (whether or not a dataflow actor has sufficient input data to perform 

a quantum of computation) can be implemented automatically from knowledge of the current 

actor mode, FIFO populations of the input ports, and date rate computation functions. Therefore, 

fireability checking is not implemented by the actor designer nor stored separately for individual 

actors. This architecture treats the invoke and data rate computation functions as additional 

―special parameters‖ that can also conceivably be changed through dynamic parameter 

management. 

We provide interfaces for using C-based ECs of actors. Implementation of these interfaces 

has been integrated as part of the run-time library in the TDIF environment. Descriptions of these 

interfaces are available in the delivered tdifc_ec.h. 

 

3.1.4. FIFO Context 

 

A run-time FIFO library for communication between CUDA-based, GPU-targeted dataflow 

actors has also been developed. This library includes both APIs and implementation code. Each 

data item in the FIFO is referred to as a ―token‖. For a given FIFO instance, there is a fixed token 

size (number of bytes per token). Tokens can have arbitrary data types — e.g., they can be 

integers, floating point values (float or double), characters, or pointers (to any kind of data). 

This organization allows for flexibility in storing different kinds of data values, and efficiency in 

storing the data values directly (without being encapsulated in any sort of higher-level ―token‖ 

object). 

We provide interfaces for using C-based dataflow FIFOs. Implementation of these interfaces 

has been integrated as part of the run-time library in the TDIF environment. Descriptions of these 

interfaces are available in the delivered tdifc_fifo.h. 

 

3.1.5. Design Template for Dataflow Actors 

 

In the TDIF environment, a well-structured design template is provided as an API for writing 

dataflow actors based on the interfaces and run-time libraries for ECs and TCs. These templates 

will be generated automatically after an associated tdif file is compiled. Here, <actor name> 

indicates the placeholder of a name with respect to an actor. 

The invoke function executes an actor instance of a library module with a given execution 

context and a given topological context. The API of the invoke function is: 
 

static void tdifcuda_lib_<actor name>_invoke(tdifc_tc_pointer tc, 

        tdifc_ec_pointer ec); 
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The production rate function enables querying of production rates with respect to the associated 

modes in an actor. It returns the production rate for an actor at the given output port, and for the 

given execution context. The API of the production rate function is:  
 

static int tdifcuda_lib_<actor name>_prod_rate(int output_index, 

        tdifc_ec_pointer ec); 

 

Similarly, the consumption rate function enables querying of consumption rates with respect to 

the associated modes in an actor. It returns the consumption rate for an actor at the given output 

port, and for the given execution context. The API of the consumption rate function is: 
 

static int tdifcuda_lib_<actor name>_cons_rate(int input_index, 

        tdifc_ec_pointer ec); 

 

Th initial design function initializes a designer-generated module (actor template). The API of the 

initial design function is: 
 

static void tdifcuda_lib_<actor name>_module_init_des( 

void *args); 

 

The free design function finalizes a designer-generated module (actor template). The API of the 

free design function is: 
 

static void tdifcuda_lib_gfilter_module_free_des(void); 

 

It is worth noting that the run-time libraries for ECs, TCs, and FIFOs are implemented in C. 

Therefore, as a naming convention, all file names in these run-time libraries are prefixed with 

tdifc. For user-specified actors and schedulers, we use tdifcuda as a file name prefix 

because they can be implemented in either C or CUDA, and CUDA can be employed as a 

wrapper for C. At this level, for C-based actors, we are not dealing with kernel acceleration but 

rather with overall schedule coordination. 

 

3.2. GPU-targeted Synthesis Tool 

 

The TDIF environment currently supports C- and GPU-based implementations (i.e., for CPU and 

GPU platforms). The GPU-based capabilities of TDIF are currently oriented towards NVIDIA 

GPUs, based on the CUDA programming framework [5]. Since CUDA is a C-like programming 

language (CUDA can be viewed a variant of C with NVIDIA extensions and certain restrictions), 

a C- or CUDA-based actor can be implemented as an abstract data type (ADT) to enable efficient 

and convenient reuse of the actor across arbitrary applications. In typical C implementations, 

ADT components include header files to represent definitions that are exported to application 

developers and implementation files that contain implementation-specific definitions.  
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Figure 1: TDIF-based Design Flow 

An illustration of the TDIF environment and associated design flow is shown in Figure 1. By 

following this methodology, the designer can focus on design implementation and optimization 

for dataflow actors and experiment with alternative task scheduling strategies and instrumentation 

techniques for the targeted platforms based on programming interfaces that are automatically 

generated from the TDIF tool. These automatically-generated interfaces provide well-defined, 

structured design templates for the designer to follow in order to generate dataflow-based actors 

that are formally integrated into the overall synthesis tool. In Figure 1, the dashed line indicates 

design considerations that need to be taken into account jointly to achieve maximum benefit from 

TDIF-based system design. 

The TDIF environment is based on four software packages — the TDIF compiler, TDIFSyn 

(TDIF Synthesis) software synthesis package, TDIF run-time library, and Software Synthesis 

Engine. The interactions among these packages are illustrated in Figure 1. 
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Figure 2: Application Graph for Image Processing Using Gaussian Filtering 

 

Figure 3: TDIF Specification for the Gfilter Actor 

The TDIF compiler, which is developed based on the Bison compiler construction 

framework [6], parses the TDIF specification of an actor and generates corresponding application 

programming interfaces (APIs) for CFDF-based, dataflow implementation of the actor in the 

targeted language. For C and CUDA, these APIs are generated in the form of header files for the 

actor programmer to base his or her implementations on. The APIs provide standard prototypes 

for interface functions, including the invoke function, which implements the functionality of the 

actor, and two data rate functions that return the production rate and consumption rate, 

respectively, associated with a given port and a given mode. The generated API features also 

include relevant constant definitions associated with the dataflow actor, including the numbers of 

input ports, output ports, modes, and parameters.  

In the software deliverables for the project, the command that is used to perform CUDA-

oriented compilation for the TDIF language is 

tdifcuda <input tdif file> 

The compiler output includes auto-generated header files for a GPU-targeted actor. 

The TDIFSyn package is a Java package that takes a DIF intermediate representation as input 

from the DIF framework (e.g., a representation that has been constructed from a TDL file), and 

generates a top-level C language implementation file and associated API for schedulers. Here, by 

scheduling, we mean the assignment of dataflow actors to processors and the execution ordering 

BMP File Read

Invert

BMP File Write

Gfilter

module CUDA gfilter 

 

output output1 float 

 

input input1 float 

 

param tileX int 

param tileY int 

param filter size int 

param grid size int 

param block size int 

 

mode init 

mode filter 
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of actors that share the same processor. Extensive prior work exists on scheduling dataflow 

graphs for various purposes (e.g., see [1]). However, systematic techniques are lacking for 

transferring the results of scheduling techniques into practical implementations. TDIFSyn helps to 

bridge this gap by providing target-language-specific APIs through which scheduling results can 

interact with the dataflow graph and its individual components. 

The automatically generated top-level C file initializes the operational contexts of actors and 

FIFOs (communication channels between actors), which have been described in Section 3.1; 

configures actor parameters; lays out the graph topology by instantiating connections between 

actor ports and their incident FIFOs; and calls a user-defined scheduler that is implemented based 

on the generated scheduling API. 

In the software deliverables for the project, the command that is used to compile the DIF 

language and generate a top-level C file is 

tdifsyn <input dif file> <output C file> 

The generated C code implements the input dataflow graph and a header file for designers to 

implement schedulers. 

 

3.3. Library Components and Application Example 

 

In Section 3.2, we have described our GPU-targeted synthesis tool, while in Section 3.1, we have 

provided the details of associated APIs. In this section, we focus on how to use these interfaces to 

develop libraries of actors, which can be systematically integrated with the overall TDIF-based 

synthesis tool. 

 

3.3.1. Application: Gaussian Filtering for Image Processing 

We use a simple image processing application centered around Gaussian filtering to demonstrate 

our TDIF-based design and synthesis approach. Figure 2 shows a graphical representation for 

this application. A bitmap (BMP) image file is read by the source BMP_File_Read actor. This 

actor converts the input image into a number of tiles that are smaller in size compared to the 

original image. During its firing, the actor writes one of the tiles to the output buffer. The actors 

Invert and Gfilter, which invert the input bitmap image and apply a Gaussian filter, 

respectively, operate on input tokens that encapsulate tiles. The BMP_File_Write actor creates 

an output bitmap image of a size equal to that of the original image using the processed tiles. 

Two-dimensional Gaussian filtering is a common kernel in image processing used for 

smoothing, denoising, etc. Filtering the image using a Gaussian filter involves a two-dimensional 

convolution operation between the image and the filter. Such operations on image pixels are 

attractive candidates for implementation on GPUs. 
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Figure 4: TDIF Specification for the BMP_File_Read Actor 

 

A TDIF specification for the Gfilter actor is shown in Figure 3. The actor specification is 

parameterized to allow high level experimentation. This is reflected in the TDIF specification 

shown Figure 3, where parameters are identified using the keyword param. Using the 

parameterization features of the actor, the application designer can specify the number of tiles 

into which the image should be divided along with the size of the filter. At the same time, 

parameters specific to GPU implementation such as grid and block sizes can also be specified at a 

high level. 

To apply the Gaussian filtering actor to a tile, input data is padded with a limited 

neighborhood around it (called a halo) depending upon the filter_size. Therefore, tiles 

produced by BMP_File_Read overlap. The halo is discarded after Gaussian filtering. The main 

processing pipeline in the graph is single-rate in terms of tiles and can be statically scheduled, but 

after initialization and end of file behavior is modeled, there is conditional dataflow behavior in 

the application graph. 

 

3.3.2. Actor Design 

We demonstrate actor code development using the BMP_File_Read actor. Figure 4 shows a 

TDIF specification for this actor. This is a source actor, and hence, does not have any inputs 

associated with it. We model this actor using the core functional dataflow (CFDF) model [4]. The 

actor has three different modes init, read, and idle. The functionality associated with each 

of these modes is described below. Note that the dataflow behavior, although fixed for a given 

CFDF mode, can in general vary across different CFDF modes of the same actor. 

As mentioned in Section 3.1, in the TDIF environment, CUDA can just serve as a wrapper 

for C. Therefore, in a TDIF specification, we also can specify CUDA as the targeted language for 

C-based actors, and at this level, we are not dealing with kernel acceleration but rather with 

overall schedule coordination. 

module CUDA bmp_file_read 

 

output tile out float 

output newrow out int 

output bmpinfo out bmp_file_info 

 

param file FILE 

param tileX int 

param tileY int 

param halo int 

 

mode init 

mode read 

mode idle 
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Figure 5: CFDF Modeling for the BMP_File_Read Actor 

 

When fired in the init mode, the BMP File Read actor sets the parameters specified in its 

TDIF specification. It also reads the input bmp file specified by parameter file. This file 

contains two components — information about the bmp file and the actual data representing the 

image. In this mode, the actor outputs the bmp file information on its output  bmpinfo_out. It 

also allocates sufficient memory internally to store a tile of size (tileX+2×halo)×(tileY+2×halo). 

It does not output anything on the other two outputs. It always returns the read mode as the next 

mode in which the actor must be fired. 

The BMP File Read actor when fired in the read mode, creates a tile of size tileX×tileY 

from the original input image. It then pads this tile by halo number of rows and columns around 

its edges. The actual values at these pixels are used during the padding. The tiles residing on the 

outer borders of the image for which no data values are available for padding are zero-padded. 

The actor outputs such padded tiles onto the output  tile_out. 

The image is processed row-wise starting from the tile containing the pixel located at index 

(0,0) (the top-left corner of the image) and proceeding along the first row of the image. When the 

last tile along the first row of the image is output, the tile with its top-left index coinciding with 

pixel (tileX,0) in the original image is formed and output. A similar procedure is repeated until the  

entire image is processed. The beginning of a new row of tiles is indicated by outputting 1 onto 

the output newrow_out. A token with value 0 is output on this edge at all other times. This 

mode always returns back to the same mode until the entire image has been processed, after 

which it returns the idle mode as the next mode of firing. 

The actor, when fired in the idle mode, performs no functional computation, and remains 

in this mode unless forced by the scheduler to fire in a different mode. Figure 5 (a) shows the 

dataflow behavior of the actor BMP_File_Read in all of its CFDF modes, while Figure 5 (b) 

shows the possible mode transition behavior for the actor. The designer, who wants to develop the 

code for a new actor in a library of actors, has to translate the dataflow and functional behavior of 

an actor to appropriate methods available in the actor’s API listed in Section 3.1.5. 

We remind the reader that each CFDF actor has fixed consumption and production rates for a 

given mode. The methods 
 

static int tdifcuda_lib_<actor name>_cons_rate(int input_index, 

Mode Production rate (number of tokens) 

 tile_out newrow_out bmpinfo_out 

init 0 0 1 

read 1 1 0 

idle 0 0 0 

 (a) Dataflow Behavior in CFDF Modes 

 

(b) CFDF Mode Transition 

 

 

init read idle
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         tdifc_ec_pointer ec); 

 

and 
 

static int tdifcuda_lib_<actor name>_prod_rate(int output_index, 

         tdifc_ec_pointer ec); 

 

return the number of tokens consumed and produced by the actor in a particular mode for the 

specified input and output, respectively. The code for the method 

tdifcuda_lib_bmp_file_read_prod_rate of the actor  BMP_File_Read, for 

example, is as shown below 
 

static int tdifcuda_lib_bmp_file_read_prod_rate(int output_index, 

        tdifc_ec_pointer ec) { 

    int prod = 0; 

if (tdifc_ec_get_mode(ec) ==  

            TDIFC_LIB_BMP_FILE_READ_M_IDX_IDLE) { 

} else if (tdifc_ec_get_mode(ec) ==  

            TDIFC_LIB_BMP_FILE_READ_M_IDX_INIT) { 

        if (output_index ==  

            TDIFC_LIB_BMP_FILE_READ_O_IDX_BMPINFO_OUT) { 

            prod = 1; 

        } 

    } else if (tdifc_ec_get_mode(ec) ==  

            TDIFC_LIB_BMP_FILE_READ_M_IDX_READ) { 

        if (output_index ==  

           TDIFC_LIB_BMP_FILE_READ_O_IDX_TILE_OUT || 

                output_index ==  

      TDIFC_LIB_BMP_FILE_READ_O_IDX_NEWROW_OUT ) { 

            prod = 1; 

        } 

    } else { 

        tdifcuda_lib_bmp_file_read_invoke_error( 

           “Invalid actor mode"); 

    } 

 

    return prod; 

} 

 

The functionality of an actor in each of its CFDF modes is coded into the invoke method: 
 

static void tdifcuda_lib_<actor name>_invoke(tdifc_tc_pointer tc, 

        tdifc_ec_pointer ec); 
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The designer must ensure that the code for this method conforms to the dataflow behavior of the 

actor as specified by the associated production and consumption rate methods. The following 

code implements the invoke method of the BMP_File_Read actor.  

 

static void tdifcuda_lib_bmp_file_read_invoke( 

        tdifc_tc_pointer tc, tdifc_ec_pointer ec) { 

    int mode = TDIFC_MODE_NULL; 

    int next_mode = TDIFC_MODE_NULL; 

 

    static int tileX = 0; 

    static int tileY = 0;  

    static int halo = 0; 

    FILE *file = NULL; 

     

    int x = 0; 

    int y = 0;  

    int newrow = 0; 

 

    static float *newtile = NULL; 

    static bmp_file_info bmpinfo; 

 

    static unsigned char *data = NULL; 

    static int imgDimX = 0; 

    static int imgDimY = 0; 

    static int tileIndexX = 0; 

    static int tileIndexY = 0; 

   

    /* Perform the appropriate computation based on the current     

       mode. */ 

    mode = tdifc_ec_get_mode(ec); 

    if (mode == TDIFC_LIB_BMP_FILE_READ_M_IDX_INIT) { 

        /* Read the header information from the bmp file */ 

        file = ((FILE *)tdifc_ec_get_param(ec,  

                TDIFC_LIB_BMP_FILE_READ_P_IDX_FILE)); 

        fread(&(bmpinfo.bmptype), sizeof(unsigned short), 1,  

            file); 

        fread(&(bmpinfo.bmpheader), sizeof(bmp_file_header), 1,  

            file); 

        fread(bmpinfo.pallet, 4,  

            bmpinfo.bmpheader.header.num_colors, file); 

 

        data = malloc(bmpinfo.bmpheader.header.width * 

                bmpinfo.bmpheader.header.height * sizeof(byte)); 

 

        /* Read the data from the bmp file */ 

        fread(data, sizeof(byte),  

           bmpinfo.bmpheader.header.width * 
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                bmpinfo.bmpheader.header.height, file); 

 

        /* Get parameter values. */    

        tileX = *((int *)tdifc_ec_get_param(ec,  

                TDIFC_LIB_BMP_FILE_READ_P_IDX_TILEX)); 

        tileY = *((int *)tdifc_ec_get_param(ec,  

                TDIFC_LIB_BMP_FILE_READ_P_IDX_TILEY)); 

        halo = *((int *)tdifc_ec_get_param(ec,  

                TDIFC_LIB_BMP_FILE_READ_P_IDX_HALO)); 

       

        /* Dimensions in tiles - rounded down */ 

        imgDimX = bmpinfo.bmpheader.header.width / tileX;   

     

        /* Dimensions in tiles - rounded down */ 

        imgDimY = bmpinfo.bmpheader.header.height / tileY; 

   

        /* Form a new tile */ 

        newtile = malloc(sizeof(float) * (tileX + halo * 2) *  

                (tileY + halo * 2)); 

        /* Write the output. */ 

        tdifc_tc_write(tc,  

           TDIFC_LIB_BMP_FILE_READ_O_IDX_BMPINFO_OUT,  

                &bmpinfo); 

        next_mode = TDIFC_LIB_BMP_FILE_READ_M_IDX_READ; 

    } else if (mode == TDIFC_LIB_BMP_FILE_READ_M_IDX_READ) {   

        /* Form a new tile */ 

        newtile = malloc(sizeof(float) * (tileX + halo * 2) *  

                (tileY + halo * 2)); 

 

        /* Assume the last index points to the right part of m 

 emory */ 

        for (y = 0; y < tileY + 2 * halo; y++) { 

            for (x = 0; x < tileX + 2 * halo; x++) { 

                float val = 0;  

                if (!((tileIndexX == 0) && (x < halo)) && 

                        !((tileIndexY == 0) && (y < halo)) && 

                        !((tileIndexX == imgDimX - 1) &&  

                        (x + 1 > halo + tileX)) && 

                        !((tileIndexY == imgDimY - 1) &&  

                        (y + 1 > halo + tileY))) { 

                    val = data[(bmpinfo.bmpheader.header.width) *  

                            (tileIndexY * tileY + y - halo) +  

                            (tileIndexX * tileX + x - halo)]; 

                } 

                newtile[(tileX + 2 * halo) * y + x] = val; 

            } 

        } 
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        /* Check for new row */ 

        if (tileIndexX == imgDimX - 1) { 

            newrow = 1; 

        } else { 

            newrow = 0; 

        } 

 

        /* Write to output buffers */ 

        tdifc_tc_write(tc,  

           TDIFC_LIB_BMP_FILE_READ_O_IDX_TILE_OUT,  

 &newtile); 

        tdifc_tc_write(tc,  

 TDIFC_LIB_BMP_FILE_READ_O_IDX_NEWROW_OUT,  

                &newrow); 

             

        /* Increment tile indices */ 

        tileIndexX++; 

 

        if (tileIndexX >= imgDimX) { 

            tileIndexX = 0; 

            tileIndexY++; 

        }  

       

        /* Determine next mode */ 

        if (tileIndexY >= imgDimY) { 

            next_mode = TDIFC_LIB_BMP_FILE_READ_M_IDX_IDLE; 

        } else { 

            next_mode = TDIFC_LIB_BMP_FILE_READ_M_IDX_READ; 

        } 

    } else if (mode == TDIFC_LIB_BMP_FILE_READ_M_IDX_IDLE) { 

        next_mode = TDIFC_LIB_BMP_FILE_READ_M_IDX_IDLE; 

    } else {       

        tdifcuda_lib_bmp_file_read_invoke_error( 

           "Invalid actor mode"); 

    } 

 

    /* Set the next mode. */ 

    tdifc_ec_set_mode(ec, next_mode); 

} 

 

This method provides functionality for the core computational component of each CFDF actor 

mode. The code for each of the CFDF modes consists of — (1) consuming the required number 

of tokens (unless the actor is a source actor), from the input buffers; (2) processing any consumed 

tokens; and (3) producing the required number of output tokens (unless the actor is a sink actor) 

onto the output buffers; and (4) returning the next mode in which the actor should be fired. The 

last component of the code effectively translates the mode transition behavior into the actual actor 

design.  
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We emphasize that code for certain types of actors may not have all of the first three 

components. For example, a source actor does not have any input buffers, and correspondingly, 

does not consume any tokens, while a sink actor does not have any outputs, and hence, produces 

no tokens. As another example of an invoke method, we provide below CUDA code for the 

invoke method of the Invert actor. 
 

static void tdifcuda_lib_invert_invoke(tdifc_tc_pointer tc, 

        tdifc_ec_pointer ec) { 

    int mode = TDIFC_MODE_NULL; 

    int next_mode = TDIFC_MODE_NULL; 

 

    int tileX = 0; 

    int tileY = 0;  

    int grid_size = 0; 

    int block_size = 0;  

 

    static float *newtile = NULL; 

    float *tile = NULL; 

 

    float *d_in = 0; 

    float *d_out = 0;  

 

    /* Perform the appropriate computation based on the current  

  mode. */ 

    mode = tdifc_ec_get_mode(ec); 

     

    if (mode == TDIFC_LIB_INVERT_M_IDX_INIT) { 

        tileX = *((int *)tdifc_ec_get_param(ec,  

                TDIFC_LIB_INVERT_P_IDX_TILEX)); 

        tileY = *((int *)tdifc_ec_get_param(ec,  

                TDIFC_LIB_INVERT_P_IDX_TILEY)); 

        newtile = (float*)malloc(sizeof(float) * tileX * tileY); 

        next_mode = TDIFC_LIB_INVERT_M_IDX_INVERT; 

    } else if (mode == TDIFC_LIB_INVERT_M_IDX_INVERT) { 

        /* Get parameter values and inputs. */    

        tileX = *((int *)tdifc_ec_get_param(ec,  

                TDIFC_LIB_INVERT_P_IDX_TILEX)); 

        tileY = *((int *)tdifc_ec_get_param(ec,  

                TDIFC_LIB_INVERT_P_IDX_TILEY)); 

        grid_size = *((int *)tdifc_ec_get_param(ec,  

                TDIFC_LIB_INVERT_P_IDX_GRID_SIZE)); 

        block_size = *((int *)tdifc_ec_get_param(ec,  

                TDIFC_LIB_INVERT_P_IDX_BLOCK_SIZE)); 

        tdifc_tc_read(tc, TDIFC_LIB_INVERT_I_IDX_INPUT1, &tile); 

        cutilSafeCall(cudaMalloc((void**)&d_out, sizeof(float) *  

                tileX * tileY)); 

        cutilSafeCall(cudaMalloc((void**)&d_in, sizeof(float) *  
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                tileX * tileY)); 

 

        if (0 == newtile || 0 == d_in || 0 == d_out) { 

            printf("Could not allocate memory: host = %p,  

                    device = %p\n", newtile, d_in); 

            return; 

        } 

 

        cudaMemset(d_out, 0, sizeof(float) * tileX * tileY); 

        cudaMemcpy(d_in, tile,  sizeof(float) * tileX * tileY, 

                cudaMemcpyHostToDevice); 

        printf("%s\n", cudaGetErrorString(cudaGetLastError())); 

 

        {    

            dim3 grid; 

            dim3 block; 

            grid.x = grid_size; 

            grid.y = grid_size; 

            block.x = block_size; 

            block.y = block_size; 

 

            stencil<<<grid, block>>>( d_in, d_out ); 

            cudaMemcpy(newtile, d_out,  sizeof(float) * tileX *  

          tileY, cudaMemcpyDeviceToHost); 

        }    

       

        /* Write the output. */ 

        tdifc_tc_write(tc, TDIFC_LIB_INVERT_O_IDX_OUTPUT1,  

           &newtile); 

        next_mode = TDIFC_LIB_INVERT_M_IDX_INVERT; 

    } else { 

        tdifcuda_lib_invert_invoke_error("Invalid mode"); 

    } 

 

    /* Set the next mode. */ 

    tdifc_ec_set_mode(ec, next_mode); 

} 
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3.3.3. Developing Schedulers 

 

 

 

Figure 6: GST Representation of Canonical Schedule for the Application Graph in Figure 2 

A scheduling transformation transforms an application dataflow graph into a representation that 

contains a sequence of actor firings and associated control logic that can be used to execute the 

dataflow graph. In CFDF graphs, the enable and invoke methods effectively allow executing 

an actor in a given mode only if sufficient input data is available. Testing for such data 

sufficiency is performed through run-time checks implemented using the enable method. A 

guarded execution of a CFDF actor A is a single invocation of A that is conditional upon the 

enable method first returning true. If A is not enabled for execution at a given point in time, 

then a guarded execution of A at that time can be viewed as a NOP (no operation). 

A simple scheduling transformation for CFDF, called the canonical scheduler, is one that 

generates a guarded execution of every actor in the CFDF graph, and sequences these guarded 

executions in some arbitrary order. The resulting schedule, called a canonical schedule, can then 

be repeated until the entire input data set is processed, a required number of outputs is generated 

or some other stopping criterion is met. 

We represent a canonical schedule for the application shown in Figure 2 using a generalized 

schedule tree (GST), as shown in Figure 6. GSTs provide a dataflow-model-independent 

representation of schedules, which can be utilized as an input to subsequent stages of a design 

flow, such as simulation and code synthesis [7]. An internal node of a GST denotes a loop count 

(the number of times to execute the associated subtree), while a leaf node points to an actor. The 

execution of a schedule involves traversing the GST in a depth-first manner, and during this 

traversal, the sub-schedule rooted at any internal node is executed as many times as specified by 

the loop count of that node. In the GST in Figure 6, double peripheries around leaf nodes indicate 

guarded execution of the corresponding actors.  

The following code demonstrates how a canonical schedule can be implemented. 
 

/* Canonical schedule repeated for iter number of times */ 

for (i = 0; i < iter; i++) { 

    /* Guarded execution of BMP file read */ 

    if (tdifc_ec_enable_check(tdifcuda_lib_bmp_file_read_ec, 

            tdifcuda_lib_bmp_file_read_tc)) { 

        tdifc_ec_invoke(tdifcuda_lib_bmp_file_read_ec,  

                tdifcuda_lib_bmp_file_read_tc); 

    } 

1

BMP File Read Invert Gaussian Filter BMP File Write
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    /* Guarded execution of invert */ 

    if (tdifc_ec_enable_check(tdifcuda_lib_invert_ec,  

            tdifcuda_lib_invert_tc)) { 

        tdifc_ec_invoke(tdifcuda_lib_invert_ec,  

           tdifcuda_lib_invert_tc); 

    } 

 

    /* Guarded execution of gfilter */ 

    if (tdifc_ec_enable_check(tdifcuda_lib_gfilter_ec, 

            tdifcuda_lib_gfilter_tc)) { 

        tdifc_ec_invoke(tdifcuda_lib_gfilter_ec,  

           tdifcuda_lib_gfilter_tc); 

    } 

   

    /* Guarded execution of BMP file write */ 

    if (tdifc_ec_enable_check(tdifcuda_lib_bmp_file_write_ec, 

            tdifcuda_lib_bmp_file_write_tc)) { 

        tdifc_ec_invoke(tdifcuda_lib_bmp_file_write_ec,  

                tdifcuda_lib_bmp_file_write_tc); 

    } 

} 

 

In the TDIF environment, the designer has the flexibility to integrate, apply, and reuse more 

sophisticated schedulers in the processes of design space exploration and implementation.  

 

3.4. Instrumentation Techniques 

 

Performance measurement of GPU-accelerated code must in general take into account overall 

application performance, including the contributions due to any associated GPPs (general purpose 

processors), and other types of processing resources in the target platform. 

Our approach to performance measurement and instrumentation distinguishes between intra-

actor and inter-actor code performance, as well as performance of actor code as it executes on 

different types of resources in a heterogeneous implementation platform. Orthogonal to the 

optimization of CUDA actors on a GPU-enabled platform, scheduling determines the resource on 

which each actor executes and the order of execution among actors that share the same processing 

resource. Thus, scheduling typically has a significant impact on software synthesis quality. Given 

a library of component modules (e.g., dataflow actors), and a formal application specification, 

software synthesis selects a subset of modules and configures the interactions among them to 

implement a given application. 
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Figure 7: GST Representation for Schedules 

In addition to performance, memory usage is often highly sensitive to scheduling decisions due to 

the data-driven property of dataflow graph execution. We have developed instrumentation 

methods to assess trade-offs between performance and memory usage and between intra-actor 

and inter-actor code performance in implementations that are synthesized from DIF and TDIF 

specifications. By applying these methods, designers can tune library module implementations as 

well as strategies for scheduling and buffer management based on characteristics and constraints 

of the given application and platform. Such tuning can be performed efficiently in our new 

DIF/TDIF framework given the formal dataflow graph structure that is enforced by the 

framework.   

 

3.4.1. Instrumented Schedule Trees 

 

Our approach to instrumentation in TDIF is designed to support the following key requirements: 

(a) no change in functionality (instrumentation directives should not change application 

functionality); (b) operations for adding and removing instrumentation points should be 

performed by designers in a way that is external to actors (i.e., does not interfere with or require 

modification of actor code); and (c) instrumentation operations should be modular so that they 

can be mixed, matched, and migrated with ease and flexibility. Such a structured, dataflow-

integrated approach to instrumentation provides significant benefits compared to the ad-hoc 

approaches to instrumentation that are typically used in multimedia system implementation.  

Instrumentation support in TDIF builds on the generalized schedule tree (GST) 

representation, which provides a standard graphical format for representing a broad class of 

dataflow graph schedules [7]. In a GST, each leaf node refers to an actor invocation, and each 

internal node n represents an expression that is interpreted as an iteration count I
n
 for the 

associated sub-tree (that is, execution of the sub-tree rooted at n is repeated I
n
 times).  
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Figure 8: Examples of IGSTs 

In its schedule tuning mode, TDIF allows designers to augment the GST representation 

with functional modules, encapsulated as instrumentation nodes (INs), which are dedicated to 

instrumentation tasks. Like iteration nodes, instrumentation nodes are incorporated as internal 

nodes. We refer to GSTs that are augmented with instrumentation nodes as instrumented GSTs 

(IGSTs). The instrumentation tasks associated with an instrumentation node are in general applied 

to the corresponding IGST sub-tree. Figure 7 shows an example of two GSTs, and Figure 8 

shows the example of IGSTs for the schedule ((3A(2BC)D)E(5F)). In Figure 8, M1… M5 

represent instrumentation nodes.  

An IGST allows software synthesis for a schedule together with instrumentation 

functionality that is integrated in a precise and flexible format throughout the schedule. Upon 

execution, software that is synthesized from an IGST produces profiling data (e.g., related to 

memory usage, performance or power consumption) along with the output data that is generated 

by the source application. 

An instrumentation node in general has two associated functions, pre and post, which 

represent instrumentation-related computations (e.g., system calls, accesses to specialized 

memory locations, counter accesses, etc.) that are to be carried out just before and after, 

respectively, the associated IGST sub-tree executes. 

Depending on the desired instrumentation functionality, one or both of the functions pre and 

post can be used. If both are used (e.g., for performance measurement), such an instrumentation 

node can be viewed as providing interval instrumentation, whereas if only one is used (e.g., to 

record memory usage), it can be viewed as point instrumentation. 

Instrumentation nodes therefore provide a formal, dataflow-integrated approach for 

specifying instrumentation functionality in a manner that flexibly interacts with but is cleanly 

separated from the code (schedule and actor code) that it interacts with. Such orthogonalization 

across scheduling, actor, and instrumentation functionality is a key strength of TDIF, which adds 

to the modularity and productivity features offered by the environment. 
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Figure 9: (a) GST of Canonical Schedule for the Gaussian Filtering Application (b) The 

corresponding IGST 

 

3.5. DIFML 

 

We have developed a design for the DIFML format which is an XML-based format for 

exchanging information between DIF and other tools and languages, and more generally, between 

arbitrary pairs of dataflow environments. Associated software plug-ins for DIF have also been 

implemented. There are different elements in the DIFML package, and these elements are listed 

hierarchically when formulating DIFML descriptions. The element at the highest level is the 

graph, while topology and interface are lower level elements. Under topology, there 

are three elements at the same level: node, edge, and interface.  

For each element, there are three kinds of attributes: implicitAttributes, 

builtInAttributes and userDefinedAttributes. ImplicitAttributes are those 

attributes necessary and inherent to the element, such as the id of a node. BuiltInAttributes are 

attributes that are recognized as part of the DIF language, typically through corresponding 

reserved words or other kinds of language constructs. 

 

3.5.1. XML format 

 

The extensible markup language, widely known as XML, is a markup language that was created 

by the World Wide Web Consortium (W3C) to overcome limitations of HyperText Markup 

Language (HTML). Like HTML, XML is based on SGML — the Standard Generalized Markup 

Language. Although SGML has been used in the publishing industry for decades, its perceived 

complexity intimidated many people that otherwise might have used it. XML was designed with 

the Web in mind. 
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A major advantage of XML is that one can encode document information more precisely 

compared to HTML. This means that programs processing these documents can ―understand‖ 

them much better and therefore process the information in ways that are not possible for ordinary 

text processors. 

One major application of XML is to make web pages with decent layout that are universally 

accessible, regardless of browser type. XML also lets one check whether or not optional features 

are present, and allows for invocation of alternative code to take care of cases where such features 

are missing. 

XML is a promising candidate for carrying data associated with high level text based 

languages for subsequent use. XML itself is designed to be self-descriptive, which ensures that all 

of the information from the original file can be understood by other applications. XML tags are 

not predefined by users. It can be convenient for users to design appropriate tags to describe the 

context of the information being exchanged. 

Representing different languages using a common XML format allows for integrated use of 

heterogeneous languages within a design flow, thereby allowing designers to combine the unique 

strengths and features associated with different languages.  

Interfacing between the DIF framework and other languages and tools can be achieved using 

DIFML, which is an XML-based format associated with DIF. 

 

3.5.2. The DIFML format 

 

As described previously, the dataflow interchange format (DIF) is proposed as a standard 

approach for specifying and integrating arbitrary dataflow-based semantics for DSP system 

design [2], and The DIF language (TDL) is an accompanying textual design language for high-

level specification of signal-processing-oriented dataflow graphs. 

In order to describe DIFML, we introduce a number of concepts associated with the general 

XML format: node, element, attribute and tags. A node is a part of the hierarchical structure that 

makes up an XML document. ―Node‖ is a generic term that applies to any type of XML 

document object, including elements, attributes, comments, processing instructions, and plain 

text. A tag is a markup construct that begins with < and ends with >. Tags come in three flavors: 

start-tags, for example <section>, end-tags, for example </section>, and empty-element 

tags, for example <line-break/>. An element is a logical component of a document. An 

element either begins with a start-tag and ends with a matching end-tag, or consists only of an 

empty-element tag. The characters between the start- and end-tags, if any, are the element’s 

content, and may contain markup, including other elements, which are called ―child elements‖. 

An attribute is a markup construct consisting of a name/value pair that exists within a start-tag or 

empty-element tag. 

DIFML is designed as an XML-based format for exchanging information between TDL and 

other tools and languages, and more generally, between arbitrary pairs of dataflow environments. 

There are different elements in DIFML and these elements are listed in a hierarchical way. The 

element at the highest level is graph, while topology and interface are lower level 

elements. Under topology, there are three elements at the same level: nodes, edges and 

interface. For each element, there are three kinds of attributes: implicitAttributes, 

builtInAttributes and userDefinedAttributes. ImplicitAttributes are those 

attributes necessary and inherent to the element, such as the id of a node. BuiltInAttributes are 
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attributes that are recognized as part of the DIF language, typically through corresponding 

reserved words or other kinds of language constructs. For example, for an edge element in an 

SDF model within a DIF graph (i.e., within a graph that is defined with the sdf keyword), there 

are three kinds of builtInAttributes: the production rate, consumption rate, and delay. 

UserDefinedAttributes are attributes that users add to selected elements at their own discretion. 

The following is a simple example of an SDF model in the DIFML format. For conciseness, we 

just show part of the associated DIFML file. 
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<?xml version=' 1. 0 ' encoding='UTF−8 ' ?> 
<difml xmlns=' http: //www. ece .umd . edu/DIFML '> 

<graph> 
<implicit Attributes> 

<name val=' dat2cd ' /> 
<type val='SDFGraph ' /> 

</ implicit Attributes > 
<topology> 

<nodes> 
<node> 

< implicit Attributes > 
<id val='A' /> 

</ implicit Attributes > 
<builtInAttributes> 

<nodeWeight type='DIFNodeWeight ' /> 
</ builtInAttributes > 
<userDefinedAttributes> 

<attribute name=' output ' type='Edge ' val=' e1 ' /> 
< attribute name=' readerFP ' type='DIFParameter ' val=' reade r ' /> 

</ userDefinedAttributes > 
</node> 

</nodes> 
<edges> 

<edge> 
< implicit Attributes > 

<id val=' e1 ' /> 
<sourceId val='A' /> 
<sinkId val='B' /> 

</ implicit Attributes> 
<builtInAttributes> 

<edgeWeight comsumption=' [ 2 ] ' delay=' 0 ' 
production=' [ 1 ] ' type='SDFEdgeWeight ' /> 

</ builtInAttributes> 
</ edge> 

</ edges> 
</ topology> 
<interface> 

<port> 
< implicit Attributes> 

<direction id=' InA ' nodeId='A' val=' IN ' /> 
</ implicit Attributes> 

</ port> 
<port> 

< implicit Attributes> 
<direction id='OutE ' nodeId='E ' val='OUT' /> 

</ implicit Attributes> 
</ por t> 

</ interface> 
</graph> 

<!−−Automatically generated from DIF file−−> 
</ difml> 
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As shown in the above example, each DIFML element contains an opening tag, a closing tag, and 

some content. The opening tag begins with a left angle bracket (<), followed by an element name 

that contains letters and numbers (but no spaces), and finishes with a right angle bracket (>). 

Following the content is the closing tag, which exhibits the same spelling and capitalization as the 

opening tag, but with one small change: a / appears right before the element name. Note that there 

is an element named node. This name is in correspondence with the related definition in the DIF 

language, and has different meaning with from the ―node‖ concept in XML terminology, which is 

a generic concept that applies to any type of XML document object. 

Currently, the DIFML parser supports several major dataflow models that are recognized in 

the DIF language, including SDF [3], cyclo-static dataflow (CSDF) [8], core functional dataflow 

(CFDF) [4], parameterized synchronous dataflow (PSDF) [9], CAL dataflow (CALDF) [10], and 

multidimensional synchronous dataflow (MDSDF) [11]. 

 

3.5.3. The DIFML Package 

 

The DIFML package is developed using Java and can be used for converting file formats between 

DIF and DIFML. That is, given a DIF file based on a specific dataflow model, such as SDF or 

CFDF, the DIFML package can transform it into the corresponding DIFML format and store the 

output into a DIFML file (i.e., *.difml). On the other hand, given a DIFML file, the DIFML 

package can transform it into the corresponding DIF format and store such format into a DIF file 

(i.e., *.dif). The bridge between the DIF file and the DIFML file is the DIF intermediate 

representation.  

In the project deliverables, two commands are provided to transform between the DIF and 

DIFML formats. To transform from the DIF format to the DIFML format, we have introduced 

df2dfml: 

df2dfml <input dif file> 

The output will be stored in the file <file>.difml, where <file>.dif is the name of the 

original DIF file.  

Similarly, to transform from the DIFML format to the DIF format, we have introduced 

dfml2df: 

dfml2df <input difml file> 

The output will be stored in the file <file>.dif, where <file>.difml is the name of the 

original DIFML file.  

 

4. Results and Discussion 

 

The actor performance implemented in CUDA is tuned according to the profiling results 

generated by CUDA Visual Profiler as well as theoretical analysis of the application. Some types 

of schedules represented as GSTs can be generated, traversed and documented automatically by 

the DIF package. Using such information, we specify where and what the instrumentation points 

are in the GST, and insert those points into the corresponding software synthesis result manually. 

Then, performance is measured after compiling the program and running the program with 

relevant input data sets. 
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To demonstrate how the TDIF scheduling-based instrumentation framework handles 

instrumentation, we use five different filter sizes to configure the Gfilter actor and implement 

the Gaussian filtering application, as shown in Figure 2, in C and CUDA. In addition to 

performance measurement, we conduct experiments on memory management efficiency as well 

as on trade-offs between performance and inter-actor context switch overhead. We will show later 

in this section that the schedule can lead to greatly improved performance if it is well-tuned — 

e.g., by allowing actors to fully utilize resources without unnecessary waiting. 

We change the filter sizes for the Gfilter actor and denote them as 5X5, 11X11, 

21X21, 25X25 and 37X37. The schedule shown in Figure 9 (a) contains references to the BMP_ 

File_Read and BMP_File_Write actors that are implemented in C, and  Invert and 

Gfilter actors that are implemented in CUDA. As illustrated in Figure 9 (b), two schedule 

nodes, M1 and M2, are used for point instrumentation and interval instrumentation, respectively.  

The IN M1 measures three types of bandwidth — Host to Device Bandwidth, Device to Host 

Bandwidth and Device to Device Bandwidth — before the execution of the application. The IN 

M2 monitors the execution time of the Gfilter actor. 

  

Figure 10: Results from Quick Mode Profiling 

 

Table 1: Performance Comparison for the Gfilter Actor Implemented in C and CUDA 

Device 0: GeForce GTX 260 

Host to Device Bandwidth, 1 Device(s), Paged memory 
Transfer Size (Bytes) Bandwidth(MB/s) 

33554432 1234.5 

 

Device to Host Bandwidth, 1 Device(s), Paged memory 
Transfer Size (Bytes) Bandwidth(MB/s) 

33554432 960.7 

 

Device to Device Bandwidth, 1 Device(s) 
Transfer Size (Bytes) Bandwidth(MB/s) 

33554432 97519.1 

 

 

 

 

Filter size 5X5 11X11 21X21 25X25 37X37 

CUDA (ms) 4.228 4.874 10.257 12.759 21.72 

C (ms) 50 280 1080 1540 3310 

Speed up 11.83 57.45 105.29 120.70 152.39 
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Table 2: Performance Comparison for the Gaussian Filtering Application Implemented in 

C and CUDA  

 

As a key building block for constructing libraries of instrumentation nodes, point instrumentation 

is a function with arguments for different measurement purposes. This function supports three 

modes, which are relevant for bandwidth testing, as well as for testing of other performance 

characteristics. 

• Quick mode: performs a quick measurement.  

• Range mode: measures a user-specified range of values.  

• Shmoo mode: performs an intense shmoo of a large range of values.  

To experiment in quick mode, M1 is specified to run a bandwidth test in quick mode, and the 

corresponding function call is inserted into the IGST during software synthesis. Figure 10 shows 

the measurement result for quick mode at the very beginning of execution. Even though the 

underlying instrumentation function is restricted to run its bandwidth test in one of three modes 

(during a given function call), the definition of M1 is flexible so that the function can be called 

multiple times with different arguments if needed. The cooperation between M1 and the 

corresponding IN implementation makes instrumentation convenient, flexible, and efficient.  

Three main aspects affects the performance: 

• The implementation of Gfilter;  

• the memory usage (buffer requirement) for dataflow graph edges; and  

• the schedule.  

Given five different filter sizes for the Gfilter actor, our experiments involving performance 

instrumentation include measurements of application performance and the performance on only 

the Gfilter actor with GPU acceleration. Here, M1 is specified as an interval instrumentation 

operation. This interval instrumentation operation measures overall application performance, and 

M2 measures the performance of the  Gfilter actor. As shown in Table 1, the CUDA 

implementations exhibit superior performance compared to the corresponding C implementations 

in these experiments.  

 Table 2 provides a performance comparison for the overall Gaussian filtering application that is 

implemented in C and CUDA. The application-level speedups, while still significant, are 

consistently less than the corresponding actor-level speedups. This is due to factors such as 

context switch overhead and communication cost for memory movement, which are associated 

with overall schedule coordination in the application implementations. 

 

Filter size 5X5 11X11 21X21 25X25 37X37 

CUDA (ms) 70 80 140 115 130 

C (ms) 70 295 1100 1550 3340 

Speed up 1 3.69 7.86 13.48 25.69 
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5. Conclusion 

 

In this project, we have developed and delivered novel software tools for design and 

implementation of layered sensing and signal processing systems. The Targeted DIF (TDIF) 

environment is a GPU-targeted software synthesis tool, which is based on the dataflow 

interchange format (DIF) framework, and provides a unique integration of dynamic dataflow 

modeling; retargetable actor construction; software synthesis; and instrumentation-based schedule 

evaluation and tuning. The DIFML package is a software package for the DIFML format, which 

is an XML-based format for exchanging information between DIF and other tools and languages, 

and more generally, between arbitrary pairs of dataflow environments. We have also presented 

and delivered application case studies to demonstrate the utility of the TDIF and DIFML 

environments. 
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LIST OF ACRONYMS 

 

ADT  Abstract Data Type 

 

API    Application Programming Interface 

 

BMP   Bitmap Image File 

 

CALDF  CAL Dataflow 

 

CFDF   Core Functional Dataflow 

 

Cg    C for Graphics 

 

CSDF   Cyclo-static Dataflow 

 

CUDA   Compute Unified Device Architecture 

 

DIF    Dataflow Interchange Format 

 

DIFML  Dataflow Interchange Format Markup Language 

 

DSP   Digital Signal Processing 

 

EC    Execution Context 

 

FIFO   First-in-first-out 

 

GPP   General Purpose Processor 

 

GPU   Graphics Processing Unit 

 

HDL   Hardware Description Language 

 

HTML   HyperText Markup Language 

 

MDSDF  Multidimensional Synchronous Dataflow 

 

NOP   No Operation 
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NVCC   NVIDIA CUDA Compiler 

 

OpenCL  Open Computing Language 

 

OpenGL  Open Graphics Library 

 

PSDF   Parameterized Synchronous Dataflow 

 

SDF   Synchronous Dataflow 

 

SDK   Software Development Kit 

 

SGML   the Standard Generalized Markup Language 

 

TC    Topological Context 

 

TDIF   Targeted DIF 

 

TDIFSyn TDIF Synthesis 

 

TDL   The DIF Language 

 

TDP   The DIF Package 

 

XML   Extensible Markup Language 
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